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1 Introduction

To make modern astronomical observations, one needs a telescope and a detector, but gen-
erally also an instrument to modify the light delivered from the telescope. The telescope
brings light from near-infinity to a focus on its focal surface. For large optical/IR telescopes,
the focal length at the secondary focus (Cassegrain/Gregorian/Nasmyth) is quite large, and
so is the diameter of the focal surface. While it is possible to put a detector directly at the
secondary focus, the sizes of modern electronic detectors are much smaller than the focal sur-
faces of large telescopes, and so reimaging instrumentation is used to demagnify the image.
(The major exceptions are imaging cameras placed at the prime focus of the telescope.)

In order to do wide field imaging or nearly any kind of spectroscopy, we typically place a
reimaging instrument behind the focal surface, and slits at the focal surface, if needed for
spectroscopy. The instrument usually consists of a collimating lens, a dispersing element in
the collimated beam if desired, and a camera that reimages the collimated beams onto a
detector.

This document attempts to explain some basics of these reimaging systems and to derive
some scaling laws. This is not an optics text. There are many existing texts, but few
specifically treat astronomical applications and many optics texts drop the reader directly
into complexities such as the mathematics of aberrations. For further background and more
detail, see for example Astronomical Optics by Daniel Schroeder; classic articles on issues
of spectrograph design include those by I.S. Bowen (1964, volume I of Stars and Stellar

Systems) and R.G. Bingham (1979, QJRAS, 20, 395).

The reason for writing this is, in part, that observers have become more disconnected from
the instrumentation as it becomes more complex. On my first observing run, I used an
instrument that my advisor built, which the two of us could pick up, and take off the side
panels to look at the optical path and adjust the internal focus. Today, there are still some
hands-on opportunities, but nobody is going to let a green grad student put his or her hands
inside a 8-meter class instrument. So the chance to see how things work is increasingly
restricted to instrument builders and optical designers. For them, this is basic lore that
“everybody knows,” but it rarely gets taught in a basic optics class.
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2 Reimaging systems

2.1 Telescopes and plate scale

Some definitions:

f = focal length, mm
N = f/number: ratio of focal length to aperture or beam diameter
D = physical diameters, mm
s = scale at a focal plane, arcsec/mm
θfield = angular field of view

To simplify the optical analysis, I will consider optical elements that are focused at infinity.
We will deal with mirrors and lenses that take incident collimated beams - parallel ray
bundles, such as from a star at nearly-infinite distance - and turn them into images at a
finite distance, or vice versa, turning images into collimated beams. In the case of collimated
beams, a mirror or lens turns the off-axis angle θ of an incident beam into an off-axis
displacement r of the image in the focal plane, and the amount of the displacement is
governed by the lens focal length f : roffaxis = θoffaxisf , where θ is in radians.

Cassegrain Gregorian Nasmyth

Figure 1: Telescope designs with locations of the secondary focus. The differ-
ence between Cassegrain and Gregorian is in the location and curvature of the
secondary mirror, and in the field curvature of the focal plane. The Nasmyth
focus is a variant of either, using a flat tertiary to change the physical location
of the focus. Nasmyth foci are useful in alt-azimuth mounted telescopes.

Large telescopes are usually derived from a Cassegrain or Gregorian design; newer designs are
almost all alt-azimuth mounting and frequently use a flat tertiary to provide a Nasmyth focus.
Cassegrain telescopes have a convex secondary mirror, while Gregorians have a concave
secondary which is located past the primary focus. Cassegrain designs are more common
because the overall structure is shorter and the enclosure can be smaller. However, the
Gregorian has a focal plane which is concave away from the telescope, toward the instrument,
while Cassegrains are the opposite. This sense of curvature can make it easier to design wide
field imagers for a Gregorian.1

The primary mirror in modern large telescopes is quite fast, with f-number ∼ 1− 3, but the
secondary mirror slows the system down, with f/5 to f/15 being a common range. In Figure
1, note that the angle of convergence at the secondary focus is narrower than it is at the

1The prime examples among 8-meter-class telescopes are the Magellan telescopes, which have an f/11
Gregorian secondary.
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prime focus. If one regards the beam as a cone of light, the f-number is simply the ratio of
height of the cone to the base.

The plate scale at the secondary focal plane of a telescope and the physical diameter of the
field of view depend on the focal length of the telescope ftel (the factor 206265” converts
from radians to arcseconds):

stel = 206265”/ftel,

ftel = DtelNtel,

Dfield = θfield/stel.

The scale at the secondary focal plane is usually large enough that it is not a good match
for modern detectors. For example, at the f/11 focus of the 6.5-m Magellan, the plate scale
is 2.9”/mm. A CCD detector with 15 µm pixels would have 0.043”/pixel, which grossly
oversamples a reasonable atmospheric seeing (∼ 0.6′′).

2.2 Simple reimaging systems

Figure 2 illustrates the optical path through a simplified reimaging system, using collimator
and camera lenses to reimage the focal plane onto a detector. The collimator and camera
are drawn as simple lenses; in a real system, they would have to be more complex to avoid
aberrations and curvature of field. However, the physical sizes of collimated beams, the
calculations of pixel scales and so on are mostly just dependent on focal lengths and f-
numbers, and are similar for simple and complex systems.

fcoll fcoll

collimator camera detector

pupil

focal plane

fcam

pupilD

Figure 2: A typical reimaging system mounted behind the focal surface of a
telescope, with light entering the focal plane from the left. A beam from a
single on-axis object is shown, diverging from the focal plane, recollimated,
and reimaged by the camera onto the detector. The collimator and camera
have been abstracted as simple lenses and the telescope focal plane is drawn as
flat, although in a real system it is not. In some instruments the collimator and
(less frequently) the camera use mirrors rather than lenses, but the principles
and scaling with focal lengths are similar.

Diverging beams emerge from each point on the focal surface and are re-collimated; the
diameter of a collimated beam is the pupil diameter,
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Dpupil = fcoll/Ntel.

The pupil is the aperture of the system, here the primary mirror. The collimator forms an
image of the mirror at the pupil location shown by the vertical dashed line. If we were to
put a sheet of paper into the beam at this location, we would see a donut of light, the shape
of the primary mirror.

2.3 Imager field of view

collimator camera detector

pupil

focal plane

Figure 3: The reimaging system with the paths of light from on-axis (black
lines) and off-axis objects (red and blue lines). The beams from the off-axis
objects are drawn as parallel to the on-axis beam. These are called “telecentric”
beams; real systems are not always telecentric, but the deviations from it are
small for the purposes of this discussion. Note that the collimator has to be
larger than a single beam to accept off-axis beams, and that all of the beams
pass through a “waist” at the pupil.

In order to image a nonzero field of view, the collimator has to accept off-axis beams, and be
physically wider than Dpupil. Figure 3 shows the path of off-axis beams through the optical
system. For the simplified case in which the off-axis beams are parallel to the optical axis
(“telecentric”) and we have abstracted the collimator as a simple lens, then

Dcoll = Dpupil + Dfield.

[Side note: For a complex lens, the Dcoll isn’t necessarily the diameter of all of the collimator
glass, but the diameter of the collimator entrance pupil. The entrance pupil of a lens by
itself is not the same thing as the pupil of the whole system, indicated by the vertical dotted
line. In both cases, pupil means the image of an aperture stop, but for the whole system,
the aperture stop is the primary mirror.]

Note that the collimator must have total f-number

Ncoll = fcoll/Dcoll,

Ncoll = Ntel

Dpupil

Dcoll

,
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Ncoll = Ntel

Dpupil

Dpupil + Dfield

.

The whole collimator lens is faster than the beam delivered by the telescope, because it has
to be wide enough to accept the off-axis beams. Faster lenses or mirrors that accept light
from larger off-axis angles are harder to construct. Imaging over a wide field also has to
contend with the curvature of the telescope focal plane. In practice, both the size of the
available detector and the requirement of good image quality for off-axis points set limits on
the field of view of an instrument.

2.4 The pupil

The pupil of the spectrograph is an image of the primary mirror formed by the secondary
and the collimator. The pupil diameter Dpupil is simply set by the expansion of the beam as
it reaches the collimator, as shown in Figure 2, and its location is set by the focal length of
the collimator.

Dpupil = fcoll/Ntel =
Dtelfcoll

ftel

Dpupil gives the minimum size of a dispersing element in the collimated beam. This is a
critical number since it sets the minimum size of a grating, grism, or other optical device
that the instrument requires.

Off-axis beams, which are displaced by Dfield/2 in the focal plane, pass through the pupil
at an angle

θoffaxis =
Dfield

2fcoll

.

All the light from on- and off-axis beams passes through a “waist” at the pupil. If we
introduced a screen into the light path at the pupil, we would see an in-focus donut-shaped
image of the primary mirror. If the screen were placed ahead of or behind the pupil, the
image of the primary would be not clearly focused.

The pupil size interacts with the field of view indirectly. Once the collimator focal length
fcoll is chosen, increasing the field of view does not increase the pupil size, since all the
off-axis beams pass through the “waist” of the pupil. However, if we choose a long fcoll, then
off-axis light enters the collimator at a less extreme angle, so the collimator lens is slower
and easier to design. But long fcoll requires a larger pupil. Equivalently, from the equations
from Ncoll above, we see that increasing Dpupil relative to Dfield makes the collimator slower.
So although field of view does not depend directly on pupil size, in real optical designs it is
difficult to image a large field through a small pupil.
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2.5 Reimaging and the scale at the detector

The camera reimages the collimated beams onto the detector/CCD. The camera has to
accept the collimated beam so it has

Dcam = Dpupil.

In practice, Dcam should be slightly greater to avoid vignetting off-axis beams. (This diameter
is really the size of the camera’s entrance pupil, not the physical size of a lens.) Thus the
f-number of the camera is

Ncam = fcam/Dpupil =
Ntelfcam

fcoll

.

Because the camera focal length is usually fairly short to get demagnification of the focal
plane onto a small detector, the camera typically has to be fast (small Ncam). As drawn in
Figure 3, the beam converges with a wider (faster) angle at the detector, compared to the
beam delivered by the telescope.

An off-axis beam is reimaged at distance from the detector center of

Dccd/2 = θoffaxisfcam.

So this means that

Dccd = Dfield

fcam

fcoll

,

sccd = stel

fcoll

fcam

,

sccd =
206265”

ftel

fcoll

fcam

.

The focal plane and plate scale have been demagnified by the ratio of collimator to camera
focal lengths. If the collimator is 3x longer than the camera, the detector can be 3x smaller
than the field size in the telescope focal plane. Large telescopes have big focal planes, while
detectors are usually smaller, so reimaging systems with demagnification allow us to get a
reasonable field of view, and can make the pixel scale a better match to the typical seeing.

3 Spectroscopy

Now consider putting a grating or grism in the collimated beam to do spectroscopy. The
important choice for spectroscopy is the lines/mm of the grating, call this Mgrating, which
governs the spectral resolution. Typical numbers for large astronomical gratings range from
100-1200 lines/mm (apart from echelle gratings, which are used at a different rangle of
incident angles and in more complex spectrographs).
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3.1 Angles of diffraction: the grating equation

from
collimator

to
camera

α

βgrating
normal

reflection
grating

Figure 4: A collimated beam incident from the left on a reflection grating
and the outgoing diffracted beams (red and blue). The incident and diffracted
angles α and β are governed by the grating equation and depend on wavelength
and the lines/mm of the grating.

A transmission grating deviates light of wavelength λ by an angle α,

sin α = korderλ/lgrating,

where lgrating = interline spacing, and korder is an integer ≥ 1. Equivalently,

sin α = korderλMgrating.

Let’s work in first order where korder = 1. For a reflection grating the grating equation is

sin α + sin β = korderλMgrating

where α and β are the angles of incident and diffracted rays with respect to the grating
normal, shown in Figure 4. The diffracted beams are shown as red and blue. Light from a
single point source produces one incident collimated beam. The diffracted beam of a single
point source at a single wavelength (e.g. the blue lines) is still collimated and will be imaged
at a single point on the detector, while the red lines will be imaged at a different point. The
fact that wavelengths are separated in angle, but each single wavelength stays collimated, is
why we want to have the disperser in the collimated beam.

The zeropoint of the diffracted angle β depends on the incident angle and grating normal,
but the change in β with λ governs the resolution of the spectrograph.

We’re not directly concerned with the zeropoint of β, assuming we have tilted the grating so
as to get light into the camera, but with the change in β per wavelength and the resulting
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wavelength scale per pixel. Consider how the camera translates a deviation in angle of the
diffracted beam to a distance on the detector, rccd. For a small deviation in angle, dβ, the
image moves

drccd = fcam dβ.

By differentiating the grating equation, for a fixed input angle α,

cos β dβ = Mgrating dλ.

For typical spectrograph layouts (other than echelles), β is not large and cos β is slightly
< 1.

This gives the wavelength/physical scale at the CCD:

dλ

drccd

=
cos β

fcamMgrating

.

3.2 Spectrograph resolution

to
camera

dα

dβ

beams from
slit edges

collimated
α

β

reflection
grating

Figure 5: Collimated beams with a small angular separation dα, as in the
beams from each edge of a slit, are incident from the left on a reflection grating.
The outgoing diffracted beams (red and blue) have diffracted angle β that
depends on wavelength. At each wavelength, the outgoing beams are spread
over a small angle dβ due to the finite size of the slit.

We know the CCD pixel scale in arcsec on the sky, so this lets us calculate the resolution
of the spectrograph for a given slit width in arcsec. Here I will neglect an effect called
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anamorphic demagnification that modifies the slit width as projected on the detector2. Let’s
assume for simplicity that our spectrograph is configured such that α ≥ β, and dα ≥ dβ.
(In practice, one would not design a spectrograph so that α = β exactly, because the grating
would also act as a mirror, reflecting zeroth-order light into the camera.) For some slit width
dW in arcsec, if the anamorphic factor dα/dβ ∼ 1, dW corresponds to a certain number of
detector pixels as calculated earlier.

drccd(in mm) = dW/sccd,

drccd =
dW

206265”
ftel

fcam

fcoll

,

and we had that

dλ =
drccd cos β

fcamMgrating

.

Therefore the delta-wavelength dλ for a slit width dW in arcsec is given by

dλ =
dW

206265”

ftel

fcoll

cos β

Mgrating

.

Note that the camera focal length has dropped out here and that fcoll is in the denominator,
meaning longer collimators give higher resolution for a given slit width. This is because the
longer collimator translates a given slit width into a smaller spread of angles, hence a smaller
spread of wavelength by the grating.

3.3 Spectral resolution is controlled by pupil size

Since ftel = DtelNtel, and fcoll = DpupilNtel, we can rewrite the equation for resolution as a
function of slit width as

dλ =
dW

206265”

Dtel

Dpupil

cos β

Mgrating

.

Many factors have dropped out, leaving only telescope and pupil diameters and the lines/mm
of the grating (and cos β, which is not very adjustable). This equation expresses a funda-
mental relation between telescopes and instruments. Everybody wants a bigger aperture
telescope, large Dtel, to gather more light. But in order to get equally high resolution spec-
tra, if we increase Dtel, we must also increase Dpupil. (Mgrating is limited, since a 1200
lines/mm grating already has interline spacing < 1 micron, close to the wavelengths of the

2Anamorphic demagnification comes from the relation of incident to diffracted angles. At fixed wave-
length, cos α dα + cos β dβ = 0. If the grating tilt is set up such that α 6= β, then dβ 6= dα. Astronomical
spectrographs are typically configured so that β ≥ α and dα/dβ ∼ 1 − 1.5. The diffracted beams from the
slit are spread over a smaller angle than the incident beams were, and the slit is demagnified at the detector.
This affects the translation of slit size into spectral resolution, giving higher resolution by ×1− 1.5 than we
will calculate for the simple case. See Schweizer (1979, PASP, 91, 149) for a detailed explanation.
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light we are trying to diffract; we can’t make a high-quality large grating that is significantly
finer.)

Again, this is because increasing the telescope size means we have to scale up the instrument,
otherwise a given slit passes a larger range of angles to the grating, and that lowers the
resolution. If we tried to get around this by making a faster telescope (smaller Ntel) with a
smaller physical scale stel at the focal plane, the beam emerging from the focal plane and
entering the collimator is faster, so it will make a big pupil anyway.

Note that for given Dtel, dλ ∝ 1

DpupilMgrating
. DpupilMgrating is the total number of lines in

the grating, or the total number of interfering elements; this is a common figure of merit for
diffracting systems.

4 Scaling with telescope size

The dλ ∝ Dtel/Dpupil scaling means that large telescopes require instruments with large
pupils - and that means bigger collimators, cameras, gratings, and detectors. Note that this
is true even for a single-object spectrograph where we don’t need to image a large field of
view, but want a reasonably high resolution.

Constructing large collimators and cameras is a challenge and constructing very large diffrac-
tion gratings is extremely difficult. The only way to get around needing a large pupil is to
have a narrower slit. That means either suffering slit losses when the slit gets smaller than
the seeing, or improving the image resolution delivered to the telescope focal plane, such as
with adaptive optics. This is one reason that extremely large telescopes will need and use
adaptive optics – to keep some of the instruments to a buildable size.

Taking an instrument from a small telescope and putting it on a big telescope can be done
(if the telescopes have the same f-number - if the f-number is different, it will either underfill
or overfill the pupil). However, it is not ideal. The larger telescope has a larger scale at its
focal plane, so for e.g. a 1.0” slit we need a physically wider slit. With the wider slit, the
resolution is worse because we are allowing a larger range of angles onto the grating, just as
it would be if we sat at the small telescope and opened the slit from 1” to 2”.

If we just want to do imaging, we can move a reimaging camera from a small to large
telescope, but of course its field of view will be proportionately smaller. The product of
D2

tel ∗ (field diameter)2 stays constant, so if we need to map an area larger than the field of
view, the large telescope won’t be faster - unless it has better image quality.

A number of instruments have used a multi-barrel reimager strategy to cover larger areas.
The idea is that for a 2x larger diameter telescope, instead of scaling up a instrument design
by 2x diameter (8x the volume of the small instrument, 4x the number of detector pixels),
one builds 4 of the smaller spectrographs and tiles the focal plane with them. This covers
the same field as the one big spectrograph, with the same number of pixels, and theoretically
requires only 4x the volume of the small instrument. Although one has to make 4 of each
optical element, the elements are all smaller, so it should be cheaper and less challenging to
fabricate. But a drawback is that they are each still using a small pupil, so the resolution
of each spectrograph will be limited: for a given slit and grating, the resolution will be 2x
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worse than it was on the small telescope.
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